Credit: wikipedia |

**Problem Statement**: The closest pair of points problem or closest pair problem is a problem of computational geometry: given n points in metric space, find a pair of points with the smallest distance between them.

Basically you are given N points in a plane - and you ahve to find two closest points.

This is algorithm may be used to find the nearest location given your current geo location. This question was posted to me as -

**'Write the algorithm to find the nearest Star bucks coffee shop given your lat longs'**The first things that comes to the mind is a

**brute force**approach, which is O(n^2) and may not be ideal.

minDist = infinity for each p in P: for each q in P: if p ≠ q and dist(p, q) < minDist: minDist = dist(p, q) closestPair = (p, q) return closestPair

So, can we optimize it? Yes, lets get it in O(n log n).

This algorithm very similar to what we do in Merge Sort. The algorithm described here uses a divide and conquer approach to find out the closest pair of points in a plane. It takes an input array of points of the type described as input above

**PSEUDO CODE**

P set of points - SORTED by X-axis

procedure findclosest ( P, int n) { n is the number of elements in set P } Set: PLeft, PRight, Pleftmin, Prightmin, Pclosest if (n <= 3) return SHORTEST(P) else PLeft = { p(1), p(2), …. , p(n/2) } PRight = { p(n/2 + 1), ……. , p(n) } Pleftmin = findclosest (PLeft , n/2) Prightmin = findclosest (PRight , n/2) Pclosest = MERGEPLANES (Pleftmin, Pleft, Prightmin, Pright) return Pclosest endif endprocedure procedure MERGEPLANES (P1min, P1, P2min, P2min) D = MINIMUM among (P1min, P2min) There might be points in each around mid-x-axis that do not form the minimum on left/right but if joined across points on other side - might give min. We create a rectange to consider such points. xi - xj < D == Means any 2 points whoes x-axis coordinates are less than D distance apart. yi +D > yj > yi – D = means any 2 points with y-coordinates are less than D distance apart. Considering above and below 7-axis, means they lie in 2D range. for (every i in P1) for every j in P2 such that xi - xj < D AND (yi +D > yj > yi – D ) if DISTANCE (i, j) < D return (i, j) endfor endfor endprocedure

Inside loop will at the max have 6 elements falling in that range. O(constant)

Outer loop worst case goes n times. O(n)

Total complexity of MERGEPLANES - O(n) * O(constant) = O(n)

Recursive loop - O(log n)

Thus, Complexity - O(n log n)

Some places it is also said that it may be O(n)

It is because only points in both the planes which are not more than MinDistance distance apart will have to be considered in order to find the closest pair.

**Explanation**

- Say P is a set of points with x and y coordinates. - sort all points by by x-coordinate (Write a comparatr which does that) - Recursively, devide the list into halves. Pleft, Pright - pass halved lists recursively to the function. We follow bottoms up approach. We'll keep deviding till we reach base case of 2-3 points and we find nearest points amont them. - Then while keep coming out of recursion, we keep maitainining the closest pair amont Pleft and Pright. - leftClosest = recursive(Pleft) - rightClosest = recursive(Pright) - Sat we have ClosestPoint data structure: - that has Point1, Point2, distance - base case: if list.length < 3 -- return Shortest Distance ClosestPoint. - now we have closest point from left & right halves. - closest point will be either one of them, or points joining across the deviding line - ClosestPoint c = merge( leftClosest, Pleft, rightClosest, Pright ) - merge -- D = min distance from leftClosest, rightClosest -- find min reactangle around deviding line -- for(i: 0-Pleft.len) --- for (j: 0-Pright.len) ---- if(Mod(pi.x-pj.x) < D || Mod(pi.y-pj.y) < d) ----- d = Distance(...) ----- if(d < D) ------ maintain minDistance and closest pair

Some places it is also said that it may be O(n)

It is because only points in both the planes which are not more than MinDistance distance apart will have to be considered in order to find the closest pair.

**References**

- http:people.cis.ksu.edu/~subbu/Papers/Closest%20pair.pdf
- http:en.wikipedia.org/wiki/Closest_pair_of_points_problem

Hey Ashish - Good article. I like your site.

ReplyDeleteYou have a typo in your procedure MERGEPLANES (P1min, P1, P2min, P2min).

The last parameter should be P2

dịch vụ hoàn thuế

ReplyDeletedịch vụ kế toán thuế

dịch vụ quyết toán thuế

học kế toán thuế thực hành

trung tâm kế toán

dịch vụ báo cáo thuế

dịch vụ báo cáo tài chính cuối năm

dịch vụ kế toán nội bộ

dịch vụ dọn dẹp sổ sách

khoá học kế toán cho giám đốc

học kế toán thực hành

Chung cư imperia garden

tiếng anh cho người đi làm

These provided information was really so nice,thanks for giving that post and the more skills to develop after refer that post. Your articles really impressed for me,because of all information so nice.

ReplyDeleteSAP training in Chennai

ReplyDeleteGreat and useful article. Creating content regularly is very tough. Your points are motivated me to move on.

SEO Company in Chennai

“Đúng vậy, nhất định là như thế”. Cô tức giận nhìn cái bụng lộ ra của mình, đột nhiên nhìn thấy mình trông thật xấu, người toàn thị là thịt.

ReplyDeleteĐáng giận! Trước kia cô có thân hình như người mẫu vậy mà hiện tại do mang thai nên trở nên xấu xí thế này.

Nhưng tại sao c Tiếng anh cho người đi làm

Tiếng anh cấp tốc

Luyện thi toeic tại hà nội

Tiếng anh cho người lớn tuổi

Tiếng anh cho người mới bắt đầu

Học tiếng anh tại hà nội

dạy tiếng anh cho doanh nghiệpô lại để ý việc anh đi với người phụ nữ khác? Rồi lại để ý đến thân hình của mình xấu đi? Việc anh ta đi với người phụ nữ khác thì có liên quan gì đến cô? Hiện tại cô đang tranh giành tình nhân với người phụ nữ khác sao?

Estimate found the site and now I sit here all my free time thinking about working out. Interesting? Okay, share a link

ReplyDeletetopnotchreal casino You can not thank

Thank you so much for posting this. I really appreciate your work. Keep it up. Great work!Best software training company with placement in Hyderabad

ReplyDeletePopular Fashion Blogs in Surat

ReplyDeleteFashion Blogger in Surat

Surat Blogger

Indian Fashion Blogger

Attend The Analytics Course in Bangalore From ExcelR. Practical Analytics Course in Bangalore Sessions With Assured Placement Support From Experienced Faculty. ExcelR Offers The Analytics Course in Bangalore.

ReplyDeleteExcelR Analytics Course in Bangalore